Note

Configuration at C-25 and stereochemical purity of 26-hydroxycholesterol of natural origin

JOSEPH REDEL
Institut de Rhumatologie, Centre de Recherches sur les Maladies Ostéo-Articulaires (U. 5 INSERMERA 337 CNRS), Hopital Cochin, 27, rue du Faubourg Saint-Jacques, 75674 Paris Cedex 14 (France)

(Received July 25th, 1978)

26-Hydroxycholesterol (cholest-5-ene-3 $\beta, 26$-diol) has been repeatedly ${ }^{1-3}$ isolated from normal and atherosclerotic human aortic tissue. Although its melting point and behaviour in thin-layer (TLC) and gas-liquid chromatography (GLC) are in agreement with data reported for ($25 R$)-26-hydroxycholesterol derived from kryptogenin ${ }^{4}$, some doubt has persisted with respect to its configuration at C-25 and its stereochemical purity. This was chiefly because of the lack of pure reference (25S)-26-hydroxycholesterol and of a method for resolving the $\mathrm{C}-25$ epimers.

We have recently reported ${ }^{5}$ the resolution of a synthetic mixture of ($25 R$)and (25S)-26-hydroxycholesterol achieved at the stage of the 3,26-diacetate by highpressure liquid chromatography (HPLC) and leading to pure ($25 S$)-26-hydroxycholesterol. The separation was performed by recycling on silica of high surface area.

These results prompted us to investigate 26 -hydroxycholesterol from human aortic tissue by HPLC in order to assign unambiguously its $\mathrm{C}-25$ configuration and stereochemical purity. In addition, 26-hydroxycholesterol (of unknown configuration at $\mathbf{C - 2 5}$) isolated ${ }^{6}$ from air-aged cholesterol was similarly tested.

EXPERIMENTAL

Instrumental

HPLC was performed with a Waters Assoc. chromatograph equipped with a 6000A pump, a U6K injector, a refractometric detector and two columns (each $30 \mathrm{~cm} \times 4 \mathrm{~mm}$ I.D.) packed with μ Porasil. The mobile phase was n-hexane containing $2.5 \%(\mathrm{v} / \mathrm{v})$ of ethyl acetate at a flow-rate of $1 \mathrm{ml} / \mathrm{min}$ and a pressure of 560 p.s.i.

Melting points were measured in open capillary tube and are uncorrected.
TLC was carried out on layers ($200 \times 200 \times 0.25 \mathrm{~mm}$) of Merck silica gel GF_{254}, with ethyl acetate-n-heptane ($1: 1, \mathrm{v} / \mathrm{v}$) as developing solvent. Spots were visualized by spraying with 5% (w/v) phosphomolybdic acid in ethanol and heating.

Samples of 26-hydroxycholesterol

26-Hydroxycholesterol isolated from human aortas ${ }^{2}$ and from air-aged cholesterol ${ }^{6}$ were gifts from Dr J. E. van Lier, of the Département de Médecine Nucléaire ct de Radiobiologie, Centre Hospitalier Universitaire, Sherbrooke, Quebec, Canada.

The 26-hydroxycholesterol derived from kryptogenin ${ }^{4}$ was a gift from Dr E. Caspi, of The Worcester Foundation for Experimental Biology, Shrewsbury, Mass., U.S.A., and was considered as being optically pure.

Acetylation of 26-hydroxycholesterol

26-Hydroxycholesterol from human aorta or other source ($1-2 \mathrm{mg}$) was acetylated (acetic anhydride and pyridine at room temperature), and the homogeneity of the resulting 3,26 -diacetate was checked by TLC ($R_{F} 0.9$). It was then dissolved in 2.5% ethyl acetate solution in n-hexane (ca. 1 ml), and the solution, filtered is necessary, was injected into the HPLC system.

RESULTS

HPLC of 26-hydroxycholesterol 3,26-diacetate resulting from acetylation of 26-hydroxycholesterol from human aorta revealed (after seven recycles) the presence of two compounds (Fig. 1), which were collected. The less polar constituent (10% of the total acetylated material) was identical with the (25S)-26-hydroxycholesterol 3,26-diacetate described previously ${ }^{5}$. Identity was established by admixture with authentic ($25 R$)- or (25S)-26-hydroxycholesterol 3,26-diacetate and HPLC. Only with the former epimer was resolution achieved after several recycles.

Fig. 1. HPLC of 26-hydroxycholesterol 3,26-diacetate from human aorta; after seven recycles, resolution is achieved. The less polar peak represents the $25 S$-epimer and the more polar one the $25 R$-epimer. The compounds were detected by refractometry.

The more polar constituent (90% of the total acetylated material) was identical with authentic ($25 R$)-26-hydroxycholesterol 3,26 -diacetate ${ }^{4,5}$ according to melting point (128°) and mixed melting point. Further proof of identify was provided by admixture with either the $25 R$ - or the $25 S$-epimer and HPLC as described above.

26-Hydroxycholesterol 3,26-diacetate prepared from 26-hydroxycholesterol derived from kryptogenin ${ }^{4}$ was submitted to HPLC; the result was similar to that shown in Fig. 1, except the $25 S$-epimer represented only 3% of the total material.

Fig. 2. HPLC of 26-hydroxycholesterol 3,26-diacetate from air-aged cholesterol; separation is achieved after seven recycles. The less polar peak represents the $25 S$-epimer and the more polar one the $25 R$-epimer. Compounds were detected by refractometry.

HPLC of 26-hydroxycholesterol 3,26-diacetate originating from 26-hydroxycholesterol from air-aged cholesterol is shown in Fig. 2; after seven recycles, resolution of the $25 R$ - and $25 S$-epimers was achieved, the latter being slightly more abundant (60%) than the former (40%).

DISCUSSION

We have previously found ${ }^{5}$ that HPLC in the recycle mode is highly efficient in resolving a $1: 1$ mixture of ($25 R$)- and ($25 S$)-26-hydroxycholesterol 3,26 -diacetate and provides pure epimers. In the present study, we have established that, even in mixtures containing as little as 3% of either, both epimers could be easily detected and separated.

When applied to 26-hydroxycholesterol 3,26-diacetate obtained by acetylation of 26 -hydroxycholesterol from human aortic tissue, HPLC proved unambiguously that this material consisted mainly (90%) of the $25 R$-epimer. Surprisingly, a small amount (10%) of ($25 S$)-26-hydroxycholesterol 3,26-diacetate was detected in this material and isolated.

Similar behaviour was observed when 26-hydroxycholesterol 3,26-diacetate derived from kryptogenin of known ${ }^{4}, 525 R$ configuration was submitted to HPLC. Again, a small amount (3%) of the $25 S$-epimer was detected in this material (hitherto presumed to be optically pure).

The presence of the $25 S$-epimer in 26 -hydroxycholesterol from either human aorta or kryptogenin has never to our knowledge been reported. It cannot be ascertained whether it was present in the raw material (a $25 S$-epimer of kryptogenin has recently been described ${ }^{7}$) or whether it arose from epimerization of ($25 R$)-26-hydroxycholesterol during chemical manipulations.

We have also tested 26-hydroxycholesterol 3,26-diacetate derived from 26hydroxycholesterol isolated from air-aged cholesterol ${ }^{6}$. Both 26-hydroperoxy- and 26-hydroxycholesterol have been isolated from this material, but their configuration
at C-25 has not been established because of the lack of adequate methods. Formation of the 26-diol during cholesterol autoxidation has been suggested ${ }^{6}$, via homolysis of the peroxy oxygen-oxygen bond, followed by protonation of the intermediate oxyradical; this should result in equal amounts of the $25 R$ - and $25 S$-epimers of 26 hydroxycholesterol. Our results (approximately equal amounts of the epimers) confirm this hypothesis.

The fact that 26 -hydroxycholesterol from human aortas is mainly the $25 R$ epimer and not a $1: 1$ mixture, strengthens the suggestion ${ }^{2}$ that the origin of this compound is enzymic and not due to cholesterol autoxidation.

ACKNOWLEDGEMENTS

We are grateful to Miss N. Bazely and Mrs Y. Calando for expert technical assistance.

REFERENCES

1 C. J. W. Brooks, W. A. Harland and G. Steel, Biochim. Biophys. Acta, 125 (1966) 620.
2 J. E. van Lier and L. L. Smith, Biochemistry, 6 (1967) 3269.
3 R. Fumagalli, G. Galli and G. Urna, Life Sci., 10 (1971), Part II, 25.
4 J. Scheer, M. J. Thompson and E. Mosettig, J. Amer. Chem. Soc., 78 (1956) 4733.
5 J. Redel and J. Capillon, J. Chromatogra., 151 (1978) 418.
6 J. E. van Lier and G. Kan, J. Org. Chem., 37 (1972) 145.
7 K. Kaneko, S. Terada, N. Yoshida and H. Mitsuhashi, Phytochemistry, 16 (1977) 791.

